Folks, get Siobhan Roberts' book "Genius At Play" to learn more about his life, and about his many other results, in game theory, and his work with Martin Gardner, Elwyn Berlekamp and Richard Guy... Invented notations for polyhedra, worked on octonions and number theory, and even published on free will. As he had to, I must end somewhere, but his work lives on! Farewell!

Show thread

John Horton Conway changed the meaning of Life for many of us. He invented surreal numbers, found simple groups - important missing pieces in their classification, wrote a captivating book about quadratic forms, and traded many more cool discoveries for small bits of his hygiene. Thanks to him I'll never forget about the bricks of princeton! I'm sorry that he couldn't live to see the full uncovering of the meaning of the monster group, which will probably take many more decades, if we're lucky.

An enjoyable problem (104.B) from the latest Mathematical Gazette: A regular 7-gon is inscribed in the unit circle, with one vertex at (1,0). Find the equations of the two parabolas, symmetric across the x-axis, which pass through the vertices of the heptagon as shown.

Estimating untested infections. Now there's a publication in Nature about an idea I first learned from @ColinTheMathmo.


*Programming in 2D text*

This evening I'm thinking of two ideas I've thought about several times before, but never together.

The first: Arjun Nair's, an esoteric language (art for art's sake) that comes with a cool visualizer. Maybe all languages should.

The second is Dave Ackley's, a tiled processor for very finely grained distributed computation. Programming it is like playing with a cellular automaton.

Category theory is a very high level tool. Take, for example, the idea of 'universal constructions'. I'd link Wikipedia, but its article comes up with a cat-theoretic description of the idea, which needlessly complicates things. It's a basic technique: Given some constraints, find the most general object (algebra, ...) that satisfies them. It's about interpreting things. It's nonconstructive. Commutative diagrams aren' programs, they're more like equations to be solved.

This is the second time I read about a problem becoming easier in hyperbolic space. I forgot the other one, I'll have to hunt for it! I can see what's happening with TSP here - there must be more problems like this! Thanks for inspiring!


Square packing:

Adam Ponting found a way to cover arbitrarily large (e.g. as measured by inradius) contiguous patches of the plane by distinct squares of sizes from \(1\) to \((2n+1)^2\), for any \(n\). Via and

@freemo \ x_{n+1} = r x_n(1 - x_n) \ is a simple enough population model. Lets try simulating it! Oh no...

new blog post summarizing the recent stuff on mating Julia sets that I've been playing with

I think I solved it!

Animated slow mating of p=-1+0i with q=-0.122+0.75i via inverting the pullback, which gives a series of functions like (az^2+b)/(cz^2+d); starting from the pixel coordinates in equirectangular projection I compute the initial z and apply all the collected functions in reverse order, colouring white if the final output |z| > R for some large R.

Next step will be trying to draw the Julia sets in the halves of the sphere.

Userland is an experimental graphical environment which can run shell commands (pipes, really) in a spreadsheet!

Have a look at this thread for a demo video and a link to fork with a Dockerfile:

@RefurioAnachro yes it's on my , needs a few of my other libraries too. but it's a bit work-in-progress, and I haven't pushed the most recent progress yet. only tested on debian

Turns out it was much simpler to just clamp the potentially huge wake image coordinates to +/-10 in mpfr_t before converting to lower-range double for cairo filling.

The image is roughly +/-1 in that coordinate frame, depending on aspect ratio - clamping may break appearance with very wide images, left a #FIXME note in the code for later.

Show thread

Thinking Outside the Plane:

Interesting roundup of 3d solutions to 2d problems, starting with Tarski's plank problem: Can you cover a diameter-\(n\) disk with fewer than \(n\) unit-width strips?

Sadly, they missed the 3d proof of Desargues' theorem:

There's also a 2d-3d connection with Miquel's six-circle theorem but I think it goes the other way:

Automatic annotation progress update:
✅ child bulbs of a mu-unit
✅ filaments of a mu-unit (done, this post)
❎ child islands of a mu-unit
❎ embedded Julia set filaments (next on the list)
❎ embedded Julia set islands
❎ embedded Julia set hubs

Mu-unit is Robert Munafo's terminology:

Show thread

I didn't know that Philip Glass had composed a piece of music for Sesame Street, and its about geometry!

The Peirce quincuncial projection[1] is a conformal map projection developed by Charles Sanders Peirce in 1879. The projection has the distinctive property that it can be tiled ad infinitum on the plane, with edge-crossings being completely smooth except for four singular points per tile. The projection has seen use in digital photography for portraying 360° views.

Non-concentration of the chromatic number of a random graph,, via

Shamir & Spencer '87 ( and Alon & Krivelevich '97 ( proved that random graphs \(G(n,p)\) with \(p=n^{1/2-\epsilon}\) have almost surely only two possible chromatic numbers. But now Annika Heckel has shown that dense random graphs have a significantly wider spread in colors.

Show more

[Notice Regarding the Transfer of the / Services] We have received several inquiries showing interest in a transfer following the announcement of the end of the and services. As a result of subsequently evaluating the situation and making preparations, we have decided that the corresponding services will be transferred to Sujitech, LLC. on June 30. Thank you.